Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.753
Filtrar
1.
Nat Commun ; 15(1): 3244, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622111

RESUMO

Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/metabolismo , Difração de Raios X , Conformação Proteica
2.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Luminescence ; 39(4): e4736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590043

RESUMO

In recent trends, radiation falls under the narrowband ultraviolet-B region (305-315 nm) widely used in phototherapy lamp applications in the treatment of skin diseases. In this paper, we report a Gd3+-doped NaYF4 luminescent material synthesized for the first time using the low-temperature co-precipitation method. It crystallized into a face-centred cubic structure, as confirmed by X-ray diffraction characterization techniques and Rietveld refinement. The photoluminescence property of the as-prepared sample shows a highly intense, sharp emission band obtained at 311 nm, which belongs to the narrowband ultraviolet-B region and corresponds to the transition of the 6P7/2→8S7/2 level of the Gd3+ ions under 272 nm excitation (8S7/2 to 6IJ). The transitions of the Gd3+ ions are detected entirely with different concentrations of Gd3+ ions. Scanning electron microscopy analysis indicated that the average particle was 288 nm. The critical distance for energy transfer was calculated to be equal to 11.5017 Å. Dipole-dipole interaction is responsible for energy transfer, as analyzed by Dexter theory. These excellent optical characteristics, together with their highly efficient and low-cost synthesis approach, indicate that synthesized NaYF4:Gd3+ phosphors have excessive potential for phototherapeutic lamp applications.


Assuntos
Luminescência , Fototerapia , Transferência de Energia , Difração de Raios X , Íons
4.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637784

RESUMO

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Assuntos
Alternaria , Nanopartículas Metálicas , Quercus , Solanum lycopersicum , Prata/química , Nanopartículas Metálicas/química , Antifúngicos , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Difração de Raios X , Antibacterianos
5.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642138

RESUMO

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Satureja , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
6.
Nat Commun ; 15(1): 3105, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600130

RESUMO

Disordered protein sequences can exhibit different binding modes, ranging from well-ordered folding-upon-binding to highly dynamic fuzzy binding. The primary function of the intrinsically disordered region of the antitoxin HigA2 from Vibrio cholerae is to neutralize HigB2 toxin through ultra-high-affinity folding-upon-binding interaction. Here, we show that the same intrinsically disordered region can also mediate fuzzy interactions with its operator DNA and, through interplay with the folded helix-turn-helix domain, regulates transcription from the higBA2 operon. NMR, SAXS, ITC and in vivo experiments converge towards a consistent picture where a specific set of residues in the intrinsically disordered region mediate electrostatic and hydrophobic interactions while "hovering" over the DNA operator. Sensitivity of the intrinsically disordered region to scrambling the sequence, position-specific contacts and absence of redundant, multivalent interactions, point towards a more specific type of fuzzy binding. Our work demonstrates how a bacterial regulator achieves dual functionality by utilizing two distinct interaction modes within the same disordered sequence.


Assuntos
Proteínas Intrinsicamente Desordenadas , Vibrio cholerae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Espalhamento a Baixo Ângulo , Ligação Proteica , Difração de Raios X , DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo
7.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474551

RESUMO

Essential oils are well known for their biological properties, making them useful for the treatment of various diseases. However, because of their poor stability and high volatility, their potential cannot be fully exploited. The use of nanoformulations to deliver essential oils can solve these critical issues and amplify their biological activities. We characterized an essential oil from Satureja thymbra via GC-MS and HPLC-DAD to provide qualitative and quantitative data. The essential oil was formulated in phospholipid vesicles which were characterized for size, surface charge, and storage stability. The entrapment efficiency was evaluated as the quantification of the major monoterpenoid phenols via HPLC-DAD. The morphological characterization of the vesicles was carried out via cryo-TEM and SAXS analyses. The essential oil's antioxidant potential was assayed via two colorimetric tests (DPPH• and FRAP) and its cytocompatibility was evaluated in HaCaT skin cell cultures. The results showed that the nanoformulations developed for the loading of S. thymbra essential oil were below 100 nm in size, predominantly unilamellar, stable in storage, and had high entrapment efficiencies. The vesicles also displayed antioxidant properties and high cytocompatibility. These promising findings pave the way for further investigation of the therapeutic potential of S. thymbra nanoformulations upon skin application.


Assuntos
Lamiaceae , Óleos Voláteis , Satureja , Óleos Voláteis/análise , Antioxidantes , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Viruses ; 16(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543792

RESUMO

The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.


Assuntos
Vírus de Plantas , Difração de Raios X , Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Microscopia de Força Atômica/métodos , Raios X , Cristalografia por Raios X
9.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555748

RESUMO

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Assuntos
Insulina , Protoporfirinas , Polieletrólitos , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Proteínas , Ponto Isoelétrico
10.
Int J Biol Macromol ; 265(Pt 2): 131026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522710

RESUMO

Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.


Assuntos
Proteínas Arqueais , Sistema Enzimático do Citocromo P-450 , Histidina , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
11.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
12.
Sci Rep ; 14(1): 7513, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553574

RESUMO

This research investigates the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Chromolaena odorata (Asteraceae) and their potential as antibacterial and antifungal agents. Characterization techniques like ultraviolet-visible, Fourier transform infrared (FTIR), Dynamic light scattering and zeta potential (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy (FESEM-EDX) confirmed the formation of spherical (AgNPs). UV-vis spectroscopy reaffirms AgNP formation with a peak at 429 nm. DLS and zeta potential measurements revealed an average size of 30.77 nm and a negative surface charge (- 0.532 mV). Further, XRD analysis established the crystalline structure of the AgNPs. Moreover, the TEM descriptions indicate that the AgNPs are spherical shapes, and their sizes ranged from 9 to 22 nm with an average length of 15.27 nm. The X-ray photoelectron spectroscopy (XPS) analysis validated the formation of metallic silver and elucidated the surface state composition of AgNPs. Biologically, CO-AgNPs showed moderate antibacterial activity but excellent antifungal activity against Candida tropicalis (MCC 1559) and Trichophyton rubrum (MCC 1598). Low MIC values (0.195 and 0.390 mg/mL) respectively, suggest their potential as effective antifungal agents. This suggests potential applications in controlling fungal infections, which are often more challenging to treat than bacterial infections. Molecular docking results validated that bioactive compounds in C. odorata contribute to antifungal activity by interacting with its specific domain. Further research could pave the way for the development of novel and safe antifungal therapies based on biogenic nanoparticles.


Assuntos
Chromolaena , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Langmuir ; 40(13): 6847-6861, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501650

RESUMO

The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.


Assuntos
Polimixina B , Surfactantes Pulmonares , Polimixina B/farmacologia , Polimixina B/química , Espalhamento a Baixo Ângulo , Bicamadas Lipídicas , Difração de Raios X , Tensoativos , Termodinâmica , Pulmão/metabolismo
14.
ACS Nano ; 18(13): 9746-9764, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38514237

RESUMO

Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.


Assuntos
Vacina BNT162 , Nanopartículas , Humanos , Lipídeos/química , RNA Mensageiro/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno/genética
15.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542055

RESUMO

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Antifúngicos/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antiparasitários , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Luz Solar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542348

RESUMO

Despite a long period of application of metal implants, carbon-carbon medical composites are also widely used for bone defect prosthesis in surgery, dentistry, and oncology. Such implants might demonstrate excellent mechanical properties, but their biocompatibility and integration efficiency into the host should be improved. As a method of enhancing, the electrophoretic deposition of fine-dispersed hydroxyapatite (HAp) on porous carbon substrates might be recommended. With electron microscopy, energy dispersion X-ray and Raman spectroscopy, and X-ray diffraction, we found that the deposition and subsequent heat post-treatment (up to the temperature of 400 °C for 1 h) did not lead to any significant phase and chemical transformations of raw non-stoichometric HAp. The Ca/P ratio was ≈1.51 in the coatings. Their non-toxicity, cyto- and biocompatibility were confirmed by in vitro and in vivo studies and no adverse reactions and side effects had been detected in the test. The proposed coating and subsequent heat treatment procedures provided improved biological responses in terms of resorption and biocompatibility had been confirmed by histological, magnetic resonance and X-ray tomographic ex vivo studies on the resected implant-containing biopsy samples from the BDF1 mouse model. The obtained results are expected to be useful for modern medical material science and clinical applications.


Assuntos
Carbono , Materiais Revestidos Biocompatíveis , Animais , Camundongos , Carbono/química , Materiais Revestidos Biocompatíveis/química , Fosfatos de Cálcio , Durapatita/química , Próteses e Implantes , Difração de Raios X
17.
Luminescence ; 39(4): e4729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548706

RESUMO

To further explore the relationship between aryl substituents and mechanofluorochromic (MFC) behaviors, four salicylaldimine-based difluoroboron complexes (ts-Ph BF2, ts-Ph-NA BF2, ts-2NA BF2, and ts-triphenylamine [TPA] BF2), including aromatic substituents with different steric hindrance effects, were designed and successfully synthesized. Four complexes with twisted molecular conformation displayed intramolecular charge transfer and aggregation-induced emission properties. Under external mechanical stimuli, the as-synthesized powders of ts-Ph BF2, ts-Ph-NA BF2, and ts-TPA BF2 exhibited redshift fluorescence emission behaviors, and ts-Ph BF2 and ts-TPA BF2 could be recovered to original shifts by fuming, but ts-Ph-NA BF2 displayed irreversible switching. ts-2NA BF2 had no change during the grinding and fuming processes. The results indicated that the MFC behaviors could be attributed to the phase transformation between the well-defined crystalline and disordered amorphous states by X-ray diffraction measurement. Further research illustrated that ts-TPA BF2 with the most significant MFC phenomenon could be applied in data security protection in ink-free rewritable paper.


Assuntos
Segurança Computacional , Difração de Raios X
18.
Sci Rep ; 14(1): 6519, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499602

RESUMO

In this study, tin dioxide nanoparticles (SnO2 NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO2 NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.20 g of SnO2 NPs, pH 8, and 30 min of agitation at 35 °C. Molecular docking studies unveiled a potential anticancer mechanism, indicating the ability of SnO2 NPs to interact with the epidermal growth factor receptor tyrosine kinase domain and inhibit its activity. The adsorption processes followed pseudo-second order kinetics and Temkin isotherm model, revealing spontaneous, exothermic, and chemisorption-controlled mechanisms. This eco-friendly approach utilizing plant extracts was considered as a valuable tool for nano-sorbent production. The SnO2 NPs not only exhibit promise in water treatment and also demonstrate potential applications in cancer therapy. Characterization techniques including scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), and energy-dispersive X-ray spectroscopy (EDAX) provided comprehensive insights into the results.


Assuntos
Nanopartículas , Estanho , Simulação de Acoplamento Molecular , Óxidos , Nanopartículas/química , Fenol , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Extratos Vegetais/química
19.
Int J Pharm ; 655: 124030, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38521376

RESUMO

Disease-causing microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are among the primary contributors to morbidity and mortality of diarrhea in humans. Considering the challenges associated with antibiotic use, including antimicrobial resistance, this study aimed to develop a novel zinc-based agent for bacterial inactivation. To this end, zinc caproate (ZnCA) was synthesized using caproic acid (CA) and zinc oxide (ZnO) in anhydrous ethanol via the solvothermal method. Structural characterization techniques, including Fourier-transform infrared spectroscopy, single crystal X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy, revealed the bidentate bridging coordination of zinc atoms with CA. The resulting two-dimensional ZnCA network was found to be composed of a distinct lamellar pattern, without any evident inter-layer interactions. Powder X-ray diffraction analysis, elemental analysis, and melting point analysis confirmed that ZnCA had an average particle size of 1.320 µm, a melting point of 147.2 °C, and a purity exceeding 98 %. Remarkably, ZnCA demonstrated potent antibacterial activity against E. coli and S. aureus, which exceeded the antibacterial efficacy of ZnO. ZnCA exerted its antibacterial effects by inhibiting biofilm formation, disrupting cell membrane integrity, increasing cell membrane permeability, and altering intracellular Ca2+-Mg2+-ATPase activity. These findings highlight the potential of ZnCA as a promising antibiotic substitute for the treatment of diarrhea in humans.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Caproatos , Staphylococcus aureus , Escherichia coli , Difração de Raios X , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Diarreia
20.
J Am Chem Soc ; 146(14): 10001-10013, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38532610

RESUMO

The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing the catalytic efficiency of de novo enzymes by several orders of magnitude without relying on directed evolution and high-throughput screening. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (kcat/KM 125 M-1 s-1) and KE70 (kcat/KM 57 M-1 s-1), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently. The most active designs display kcat/KM values improved by 100-250-fold, comparable to mutants obtained after screening thousands of variants in multiple rounds of directed evolution. Crystal structures show excellent agreement with computational models, with catalytic contacts present as designed and transition-state root-mean-square deviations of ≤0.65 Å. Our work shows how ensemble-based design can generate efficient artificial enzymes by exploiting the true conformational ensemble to design improved active sites.


Assuntos
Enzimas , Cristalografia por Raios X , Difração de Raios X , Domínio Catalítico , Catálise , Enzimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...